Measuring water fluxes in the Eel River Watershed is extremely important. We are in the midst of a multi-year drought and demands on the water supply for agriculture and rural use are only increasing.

An ongoing project at the Eel River Critical Zone Observatory is to improve existing stage-discharge relationships, to better document the amount of water flowing through the watershed. Stage refers to the height of water in the river, and discharge refers to the volume of water that flows by in a given time.

We can measure the stage with an automated system that makes use of pressure transducers, but knowing the discharge is complicated because of the ever-changing geometry of the river bed and the turbulent nature of flowing water. The approach to this problem is to develop an empirical relationship between stage and discharge across a range of stages, from low summer baseflow to high winter floods.

 

Salt dilution technique by David Dralle
Salt dilution technique by David Dralle

Here David Dralle is demonstrating the salt dilution technique to measure discharge on the South Fork of the Eel River, just downstream from Headquarters. A known volume of salt solution is added to a turbulent stretch of the river, and the increase in electrical conductivity is measured downstream, after the salt is well mixed into the flow. The more the salt is diluted, the higher the flow.

Dan Moore has written a very helpful series of articles on the use of the technique. For more information, see the intro to the series, published in Streamline Water Management Bulletin (http://www.siferp.org/sites/default/files/publications/articles/streamline_vol7_no4_art5.pdf)

Measuring stream discharge with the salt dilution technique